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Multi-Feature Beat Tracking
José R. Zapata, Matthew E. P. Davies, and Emilia Gómez

Abstract—A recent trend in the field of beat tracking for mu-
sical audio signals has been to explore techniques formeasuring the
level of agreement and disagreement between a committee of beat
tracking algorithms. By using beat tracking evaluation methods to
compare all pairwise combinations of beat tracker outputs, it has
been shown that selecting the beat tracker which most agrees with
the remainder of the committee, on a song-by-song basis, leads to
improved performance which surpasses the accuracy of any indi-
vidual beat tracker used on its own. In this paper we extend this
idea towards presenting a single, standalone beat tracking solution
which can exploit the benefit of mutual agreement without the need
to run multiple separate beat tracking algorithms. In contrast to
existing work, we re-cast the problem as one of selecting between
the beat outputs resulting from a single beat tracking model with
multiple, diverse input features. Through extended evaluation on
a large annotated database, we show that our multi-feature beat
tracker can outperform the state of the art, and thereby demon-
strate that there is sufficient diversity in input features for beat
tracking, without the need for multiple tracking models.

Index Terms—Beat tracking, evaluation, music information re-
trieval, music signal processing.

I. INTRODUCTION

T HE extraction of beat times from musical audio signals
is a key aspect of computational rhythm description [1],

and forms an important research topic within music informa-
tion retrieval (MIR). Since the earliest audio beat tracking
systems [2]–[4] in the mid to late 1990s, there has been a
steady growth in the variety of approaches developed and the
applications to which these beat tracking systems have been
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applied. For a recent review see [5, ch.2]. Indeed, beat tracking
systems are now considered “standard” processing components
within many MIR applications, such as chord detection [6],
structural segmentation [7], cover song detection [8], automatic
remixing [9] and interactive music systems [10].
While the efficacy of beat tracking systems can be evalu-

ated in terms of their success of these end-applications, e.g.
by measuring chord detection accuracy, considerable effort has
been placed on the evaluation of the beat tracking systems di-
rectly through the use of annotated test databases in particular
within the MIREX initiative. In the small number of compara-
tive studies of automatic beat tracking algorithms with human
tappers [11]–[15] musically trained individuals are generally
shown to be more adept at tapping the beat than the best com-
putational systems. Given this gap between human performance
and computational beat trackers, we consider that beat tracking
is not yet a solved problem and still has high potential for im-
provement. In recent work [14], it was speculated that the ad-
vancement of computational beat tracking systems was stag-
nating due to a lack of diversity in annotated datasets, and the
pursuit of so-called “universal” models for beat tracking which
attempt to use a single approach to determine beat locations in
all styles of music. Genre-specific breakdowns of beat tracking
performance (e.g.[12], [13], [16]) illustrate a heavy preference
towards what could be considered “easier” styles of music, such
as rock, pop, and electronic dance music, which also tend to be
the most abundant within current annotated datasets.
While the idea of a universal model for beat tracking would

seem to be an attractive goal, Collins [15] proposes strong argu-
ments as to why this is (currently) unrealistic. He suggests that
the main flaw of computational beat tracking systems is a lack of
understanding of the higher-level musical context; however, this
context is obvious to the trained human listener when tapping
to music. The eventual route towards improving beat tracking
would therefore appear to be through the use of higher level
knowledge of musical style coupled with the understanding of
how to apply this knowledge in the context of beat tracking.
Through simulated evaluation (e.g., in [17], [18, ch.4]), where
a priori knowledge of the best beat tracking system per genre
can be used, large hypothetical gains in performance are pos-
sible. However, to the best of our knowledge, no such system
currently exists which can outperform the state of the art using
automatic determination of musical style or genre.
Where improvements to the state of the art have been made,

is through a more indirect usage of the effectiveness of dif-
ferent beat tracking systems for different types of music sig-
nals. In [14], a measure of mutual agreement (MA) was used
to select between a committee of five existing state of the art
beat tracking algorithms, where the beat tracking output which
agreed most with the remainder of the committee was chosen
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as the most representative. Although this system was shown to
improve upon the overall performance of any individual algo-
rithm on a large database, it does not represent a practical beat
tracking solution since it requires the execution of five separate
beat tracking algorithms across multiple platforms. Here, our
motivation is to transfer this concept mutual agreement in beat
tracking towards a standalone beat tracking solution.
Following recent results in [18, ch.4] which show greater

potential for improving beat tracking through input features
to beat tracking systems rather than tracking models, we
present a mutual agreement based beat tracker which draws
information from multiple input features and passes them to
a single beat tracking model. Our hypothesis is that there is
sufficient diversity within different types of input features to
facilitate an improvement in the state of the art by selecting
between the resulting beat sequences, without the need for
multiple separate tracking models. Furthermore, we speculate
that the improvement obtained in the multiple beat tracking
system in [14] was the result of the different input features to
the beat tracking systems, rather than the inherent properties of
the different beat tracking models. Therefore, to best address
hypothesis, we mirror the main processing steps in [14] for
the calculation of mutual agreement. However, in addition to
the main methodology of [14], we present a more extensive
evaluation, we demonstrate how to use the meanMA value as a
measure of beat tracking confidence, and we examine the beat
tracking committees in terms of computational complexity.
The remainder of the paper is structured as follows: in

Section II we describe the set of input features, summarize the
beat tracking model and present the methods we use to measure
agreement in beat sequences. In Section III we describe the
experimental setup in terms of the test database and evaluation
methods used. In Section IV we present an extended evaluation.
This includes measuring the performance of each individual
onset detection function and then demonstrating the improve-
ment when selecting a beat sequence using mutual agreement.
Section V concludes the paper with discussion of the results
and areas for future work.

II. MULTI-FEATURE BEAT TRACKING SYSTEM

The proposed multi-feature beat tracking system (shown in
Fig. 1) is composed of three parts, first, a set of onset detection
functions (ODF), this is followed by beat period estimation and
beat tracking for each ODF. Finally, the overall beat output is
chosen using a selection method applied to the set of estimated
beat locations. The proposed beat tracker is publicly available1.

A. Input Features

In beat tracking, an onset detection function is commonly
used as a mid-level representation that reveals the location
of transients in the original audio signal. This onset detection
function is designed to show local maxima at likely event
locations [19]. Many methods exist to emphasize the onset of
musical events and the performance of beat trackers strongly
depends on the low-level signal features used at this stage [20].

1http://essentia.upf.edu/, BeatTrackerMultiFeature(), Affero-GPL.

Fig. 1. System Overview. The multi-feature beat tracker is comprised of three
stages: (i) a set of onset detection functions, , as input features;
(ii) beat period estimation and beat tracking; and iii) a selection method to
choose between the set of beat outputs.

Towards building our multi-feature beat tracking system
we first collected the onset detection functions from each
beat tracking algorithm used in [14] and [21]. Some of these
algorithms were freely available online and the remainder were
provided by the algorithm authors or reimplemented. In addi-
tion, other onset detection functions were included, where they
were deemed to be complementary to those already selected, i.e.
those with the ability to detect note onsets in specific musical
contexts such as music without strong percussive content [22].
As in [14] our goal is to obtain a small but diverse committee
making use of publicly available reference implementations
wherever possible. In addition, while a computationally effi-
cient system is not the specific goal of this research, we seek
to avoid any input features which are very computationally
expensive to calculate - as their eventual benefit may not be
worth the increase in computation time.
In total we compiled an initial set of nine onset detection func-

tions which are described below. Note that while each onset de-
tection function is extracted according to its original parame-
terization in terms of window length and hop size (assuming a
mono input audio signal sampled at 44.1 kHz), each onset de-
tection function is subsequently resampled to have a temporal
resolution of 11.6 ms prior to extracting the beats in order to
match the input feature resolution expected by the beat tracking
model. In the following equations for generating onset detection
functions, refers to the discrete Fourier transform spec-
trum of an audio frame , the symbol is the index over linear
frequency bins in and is an index over a smaller number of
sub-bands, .
1) Energy Flux (EF): Equation (1) is a simplified implemen-

tation of the Energy flux function [23], and is calculated by com-
puting short time Fourier transform frames using a window size
of 2048 and hop size of 512, corresponding to an input feature
resolution of 11.6 ms. From these frames, each input feature
sample is calculated as the magnitude of the differences
of the root mean square (RMS) value between the current short
time Fourier transform frame and its predecessor:

(1)
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2) Spectral Flux (SFX): The spectral flux onset detection
function proposed in [24] and presented in (2), is calculated by
computing short time Fourier transform (STFT) frames using
a window size of 2048 and hop size of 512, corresponding
to an input feature resolution of 11.6 ms. From these frames,
each input feature sample is calculated as the sum of
the positive differences in magnitude between each frequency
bin of the current short time Fourier transform frame and its
predecessor:

(2)

where is the half-wave rectifier function.
3) Spectral Flux Log Filtered (SFLF): Introduced by Böck et

al. [25] this method is based on spectral flux, but the linear mag-
nitude spectrogram is filtered with a pseudo Constant-Q filter
bank, as can be seen in (3),

(3)

where the frequencies are aligned according to the frequencies
of the semitones of the western music scale over the frequency
range from 27.5 Hz to 16 kHz, using a fixed window length for
the STFT, a window size of 2048 and a hop size of 512. The
resulting filter bank, , has frequency bins with
b denoting the bin number of the filter and k the bin number
of the linear spectrogram. The filters have not been normalized,
resulting in an emphasis of the higher frequencies, similar to
the high frequency content (HFC) method. From these frames,
in (4) each input feature sample is calculated as the sum of the
positive differences in logarithmicmagnitude (using as a com-
pression parameter, ) between each frequency bin of the
current STFT frame and its predecessor:

(4)

4) Complex Spectral Difference (CSD): The complex spec-
tral difference input feature [26], presented in (5), is calculated
from the short time Fourier transform of 1024 sample frames
with a 512 sample hop size, resulting in a resolution of 11.6 ms.
The feature produces a large value if there is a significant change
in magnitude or deviation from expected phase values, different
from the spectral flux that only computes magnitude changes in
frequency. is the expected target amplitude and phase for
the current frame and is estimated based on the values of the
two previous frames assuming constant amplitude and rate of
phase change,

(5)

5) Beat Emphasis Function (BEF): Introduced in [27], the
Beat emphasis function is defined as a weighted combination
of sub-band complex spectral difference functions (5), ,
which emphasize periodic structure of the signal by deriving
a weighted linear combination of 20 sub-band onset detection
functions driven a measure of sub-band beat strength,

(6)

where the weighting function favours sub-bands with
prominent periodic structure. In (6), BEF is calculated from
the short time Fourier transform of 2048 sample frames with a
1024 sample hop size, the output is interpolated by a factor of
two, resulting in a resolution of 11.6 ms.
6) Harmonic Feature (HF): The harmonic feature presented

byHainsworth andMacleod [28] is a harmonic change detection
and is calculated in (7) by computing a short time Fourier trans-
form using a window size of 2048 sample frames with a 512
sample hop size. HF uses a modified Kullback-Leibler distance
measure to detect spectral changes between frequency ranges
of consecutive frames. The modified measure is thus tailored to
accentuate positive energy change,

(7)

Only the region of 40 Hz-5 kHz was considered to pick peaks, a
local average of the function was formed and then the maximum
picked between each of the crossings of the actual function and
the average.
7) Mel Auditory Feature (MAF): The Mel Auditory Feature,

introduce by [29], is calculated by resampling the audio signal
to 8 kHz and calculating a short time Fourier transform magni-
tude spectrogram with a 32 ms window and 4 ms hop size. In
(8) each frame is then converted to an approximate “auditory”
representation in 40 bands on the Mel frequency scale and con-
verted to dB, . Then the first order difference in time is
taken and the result is half-wave rectified. The result is summed
across frequency bands before some smoothing is performed to
create the final feature,

(8)

8) Phase Slope Function (PSF): The group delay is used to
determine instants of significant excitation in audio signals and
is computed as the derivative of phase over frequency ,
as seen in (9). In [22], it was used as an onset detection func-
tion. Using an analysis window with a large overlap the average
group delay was computed for each window. The obtained se-
quence of average group delays is referred to as the phase slope
function (PSF). The resulting resolution of the signal is 6.2 ms.
To avoid the problems of unwrapping the phase spectrum of the
signal for the computation of group delay can be computed as:

(9)

Where and are the Fourier Transforms of and
, respectively. The phase slope function is then computed

as the negative of the average of the group delay function.
9) Bandwise Accent Signals (BAS): Introduced by Klapuri

et al. [16], Bandwise Accent Signals are calculated from 1024
sample frames with a 512 sample hop size. The Fourier trans-
form of these frames is taken and used to calculate power en-
velopes at 36 sub-bands on a critical- band scale. Each sub-band
is up-sampled by a factor of two, smoothed using a low-pass
filter with a 10-Hz cutoff frequency and half-wave rectified. A
weighted average of each band and its first order differential is
taken, . In [16] each group of 9 adjacent bands (i.e. bands
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1–9, 10–18, 19–27 and 28–36) are summed up to create a four
channel ( ) input feature with a resolution of 5.8 ms, however
in this paper we simply sum all 36 power envelopes to generate
a single output feature,

(10)

B. Beat Period Estimation and Tracking Model

Given each onset detection function we now address the
task of estimating beat locations. Since our system relies on
a single beat tracking model, we select a beat tracker which
has been shown to perform well in comparative studies and
is freely available. To this end, we choose the method of
Degara et al. [30], which was also part of the committee of beat
tracking algorithms in [14].
The core of Degara’s beat tracking model is a probabilistic

framework which takes as input an onset detection function
(used to determine the phase of the beat locations) and a pe-
riodicity path which indicates the predominant beat period (or
tempo) through time. While a different input feature (or user-
specified input) could be used to determine the periodicity path,
in practice it is estimated from the same onset detection func-
tion. The technique for finding the periodicity (as used in [30])
is an offline version of the Viterbi model in [31]. This Viterbi
model assumes the beat period to be a slowly varying process
with transition probabilities modeled using a Gaussian distri-
bution of fixed standard deviation. To estimate the beats, the
system integrates musical-knowledge and signal observations
using a probabilistic framework to model the time between con-
secutive beat events and exploits both beat and non-beat signal
observations. For more information on the tracking method,
see [30]. Since our primary concern in this paper relates to the
input features supplied to the beat tracker, we can treat the beat
tracker as a “black box”.
To create the committee of beat trackers, we calculate a sep-

arate periodicity path and set of beat locations for each onset
detection function.

C. Selection Method and Measuring Mutual Agreement

The mutual agreement (MA) method was presented in [14]
and [21] to compare multiple beat tracking sequences. When
looking to select one beat sequence from the committee, the
beat sequence with the maximum mutual agreement (MaxMA)
was chosen.When evaluated, this method was shown to provide
significant improvements in beat tracking performance over 16
reference beat tracking systems [14].
As shown in Fig. 2 and equation (11), the mutual agreement,
, of a sample is computed by using the beat estimations of

a committee of beat trackers on a musical piece, measuring
the agreement between estimated beat sequences and .

(11)

The Mean Mutual Agreement (MMA) is computed by mea-
suring the mean of all mutual agreements between all
estimated beat tracker outputs .

Fig. 2. Example calculation of the Mutual Agreement (MA) and Maximum
Mutual Agreement (MaxMA) for a song with the beats estimated from a com-
mittee of four beat trackers.

In [32] the properties of existing beat tracking evaluation
measures [33] were reviewed for the purpose of measuring
mutual agreement. Of these, the Information Gain approach
[34] (InfGain) was shown to have a true zero value able to
match low MMA (measured in bits) with unrelated beat se-
quences. In [21] an MMA value of 1.5 bits was shown to work
as a confidence threshold for beat tracking.
While Information Gain was shown to be a good indicator of

agreement between beat sequences from among existing beat
tracking evaluation methods, it is not the only approach which
could be used. In this paper we also explore an alternative mech-
anism for measuring agreement, the regularity function of Mar-
chini and Purwins [35], which quantifies the degree of temporal
regularity between time events. To calculate the regularity we
first concatenate and sort the beats of two different beat se-
quences, then we compute the histogram of the time differences
between all possible combinations of two beats (the complete
inter-beat interval histogram, CIBIH). In this way, we obtain
is a kind of “harmonic series” of peaks that are more or less
prominent according to the self-similarity of the sequence at
different time scales. Second, we compute the autocorrelation

(where corresponds to lag in seconds) of the CIBIH
which, in the case of a regular sequence, has peaks at multi-
ples of the tempo. Let be the positive time value corre-
sponding to its upper side peak. Given the sequence of beats

we define the regularity of the sequence of
beats to be:

(12)

If the beat estimations are more equally spaced in time the reg-
ularity value will be higher, whereas if the beat estimations are
unrelated the regularity value will be lower. For more informa-
tion see [35].
Referring again to Fig. 1, the chosen selection mechanism

(either Information Gain or Regularity) is the final stage in our
multi-feature beat tracking which provides the eventual beat
output.

III. EXPERIMENTAL SETUP

A. Dataset

The largest available dataset for beat tracking evaluation
to date was introduced by Gouyon [36] and contains a total
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of 1360 excerpts from different styles of music, in a compi-
lation of the Klapuri [16], Hainsworth [37], SIMAC2 project
and CUIDADO [38] project datasets. It will be referred to as
Dataset1360 throughout this paper.
We use Dataset1360 to analyze the diversity and accuracy

of the different onset detection functions. Based on these re-
sults we will: i) select our committee of onset detection func-
tions; ii) give empirical evidence of using Maximum Mutual
Agreement (MaxMA) for selecting the best beat tracking esti-
mation from the committee; and iii) verify the behavior of the
MMA method calculated with a committee formed by different
onset detection functions to assess difficulty for automatic beat
tracking.
The dataset is comprised of 10 genres: Acoustic (84 pieces),

Jazz/Blues (194 pieces), Classical (204 pieces), Classical solo
(79 pieces), Choral (21 pieces), Electronic (165 pieces), Afro-
American (93 pieces), Rock/Pop (334 pieces), Balkan/Greek
(144 pieces), and Samba (42 pieces). Inspection of the break-
down across musical genres reveals fewer than 40% of excerpts
are Rock, Pop or Electronic which are often considered “easier”
categories for beat tracking [14]. Given the high proportion of
more challenging musical genres for beat tracking and the large
number of annotated excerpts, we believe this forms a suffi-
ciently diverse test set for measuring beat tracking performance
and to demonstrate the potential gains available from our multi-
feature approach. For further details on the dataset, see [36].

B. Evaluation Measures

For evaluating the beat tracking accuracy against manual an-
notations, we use a subset of methods from the beat tracking
evaluation toolbox [33]. These evaluation methods are also used
in the beat tracking evaluation task within MIREX.
Among all the proposed evaluation metrics, we use the conti-

nuity measures as originally defined in [16], [37] with an output
range between [0 - 100]%. This allows us to analyze both the
ambiguity associated with the annotated metrical level and the
continuity in the beat estimates. These accuracy measures con-
sider regions of continuously correct beat estimates relative to
the length of the audio signal analyzed. Continuity is enforced
by defining a tolerance window of 17.5% relative to the current
inter-annotation-interval. To allow the beat tracker to initially
induce the beat, events within the first five seconds of each ex-
cerpt are not evaluated. The continuity-based criteria used for
performance evaluation are the following:
• CMLc (Correct Metrical Level with continuity required)
gives information about the longest segment of continu-
ously correct beat tracking.

• CMLt (Correct Metrical Level with no continuity re-
quired) accounts for the total number of correct beats at
the correct metrical level.

• AMLc (Allowed Metrical Level with continuity required)
is the same as CMLc but it accounts for ambiguity in the
metrical level by allowing for the beats to be tapped at
double or half the annotated metrical level.

2http://mtg.upf.edu/simac/

• AMLt (Allowed Metrical Level with no continuity re-
quired) is the same as CMLt but it accounts for ambiguity
in the metrical level.

C. Reference Systems

To compare our system against existing beat trackers, we
compiled a set of existing algorithms, including those with
freely available implementations online and others provided
by the authors of the systems on request. To summarize the
accuracy of each beat tracking system, the mean value of the
performance measures across all the audio files of the test
database is presented. Statistically significant differences on the
mean values were also checked. For this, we use a paired T-test
with as a guide to indicate statistical significance. In
total we compiled 18 state of the art beat trackers (expanding
the set originally in [14]) and also compare against the five
committee beat tracker from [14].

IV. RESULTS

A. Committee Members

Before presenting comparative results against other beat
tracking algorithms we first analyze the composition of the
committee of beat trackers in our multi-feature beat tracker.
The initial committee is composed of the beat tracking outputs
from the following onset detection functions, as described in
Section II-A: bandwise accent signal (BAS), beat emphasis
function (BEF), complex spectral difference (CSD), energy
flux (EF), harmonic feature (HF), mel auditory feature (MAF),
phase slope function (PSF), spectral flux (SFX) and spectral
flux log filtered (SFLF). Following [14], we aim to reduce this
initial committee to a smaller subset by including only those
input features which, in combination, can lead to a hypothetical
improvement in performance against the ground truth; that
is, if the beats from a particular input feature are never more
accurate than beats from another input feature, then there is
little value in including the “weaker” input feature.
Towards determining a sub-committee, we evaluate the mean

performance of each feature as input to the Degara beat tracker
on Dataset1360 in Table I. From inspection of the table, we can
see the CSD has the highest accuracy under AMLt, and the EF
and PSF perform least well. We speculate that this relatively
low performance across the diverse set of musical styles in the
test dataset is due to the specific emphasis in detecting changes
in only one signal variable (i.e. energy, or phase), compared to
the more general nature of the CSD method. Note however that
overall performance itself is not a reliable indicator for inclusion
in the sub-committee. Since we wish to exploit the ability of
different input features to be appropriate for beat tracking in
different contexts, our goal is towards finding a complementary
set to form the committee.
To find the relevance of each ODF in the committee we make

use of the sequential forward selection, SFS, method, as used
in [14]. At this stage we do not make use of any methods for
measuring mutual agreement–these will follow once we have
selected our committee. We begin by fixing the first member of
the committee as the one whose mean performance across the
entire dataset is highest, in this case the CSD onset detection
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TABLE I
MEAN CONTINUITY MEASURES PERFORMANCE (%) OF EACH FEATURE

AND THE ORACLE IN THE 1360 SONG DATASET

function. To determine the second ODF to enter the committee,
we proceed as follows:
(i) We choose any of the other ODFs and, for this ODF, we
find the best possible beat accuracy (i.e. oracle) score
that could be achieved by perfectly selecting between this
ODF and CSD for every file in the dataset.

(ii) We then repeat this process to obtain a mean oracle score
per potential committee member for all other ODFs across
the dataset.

(iii) We then select the ODF which, in combination with the
CSD beat tracker, leads to the maximum improvement in
overall beat tracking accuracy over using just CSD on its
own.

Once the second committee member has been added, we then
remove it from the pool of potential committee members and
repeat the process described above. However, rather than com-
paring to the beat accuracy scores from CSD per file in the
dataset, we update this to reflect the best score per file from
the two committee members. This procedure is iteratively con-
tinued until all onset detection functions have been included,
with the same merging of best scores at each iteration.
When the selection process has been completed we can look

at the order in which each ODF entered the committee and
the improvement in performance achieved by its inclusion. We
can then determine a subset by fixing the number of committee
members at the point where improvements offered by additional
members is small. Using the SFS method the order in which the
ODF enter the committee in the order listed in Table I, i.e. CSD,
HF, PSF etc.
In Fig. 3(a) a comparison between the mean performance of

the Oracle and the Multi-feature beat tracker versus the number
of committee members is presented. By comparing the improve-
ments between the best ODF alone (CSD) when new members
(given by the SFS method) are added to the committee, we find
that after the sixth member is added, the performance is higher
and statistically significant for the AMLc and AMLtmeasures.
In Fig. 3(b). we show the improvement obtained by automatic
selection between beat outputs using information gain and reg-
ularity. Table II presents the evaluation results of the best ODF
mean performances of each of the genres of the Dataset1360
per evaluation measure. There is no statistical difference be-
tween the results of the best three ODFs per genre. However
some ODFs performed statistically worse than the others in
these genres: Acoustic (EF), Afro-American (PSF), Classical

Fig. 3. (a) Oracle Mean Performance vs number of committee members.
(b) Multi Feature (Inf Gain and Regularity) Mean Performance vs number of
committee members.

TABLE II
MEAN PERFORMANCE (%) OF THE BEST FEATURE

PER GENRE IN THE 1360 SONG DATASET

(BEF, EF, SFX), Classical Solo (SFX), Electronic (PSF), Jazz
(EF, HF, MAF), Rock/Pop (PSF), Samba (HF, MAF). Overall
our results confirm the intuition that ODFs which are sensitive
only to phase or harmonic changes are not the best choice for
music genres with strong percussion, furthermore the EF is not
a good choice for music without prominent percussion. Com-
paring the AMLt results of each onset detection function in
Dataset1360, we find that 53% of the songs could be improved
by using multiple ODF versus only using the single best per-
forming onset detection function for this model, which led to an
11.6% average improvement.



822 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 22, NO. 4, APRIL 2014

TABLE III
MEAN GROUND TRUTH PERFORMANCE (%) OF EACH BT ON DATASET1360.

BOLD NUMBERS INDICATE BEST PERFORMANCES

http://developer.echonest.com/

B. Comparison Results

In Table III, the mean accuracy of the different beat tracking
algorithms is compared.
We present two configurations of the multi-feature beat

tracker: the first with six committee members (CSD, HF, EF,
PSF, SFLF and BEF) chosen by the SFS method with the
information gain (Multi InfG) and regularity (Multi Reg) used
in the selection step; and the second configuration (MultiFt
Essentia) which is the C++ of the Multi-feature Information
Gain (ZDG1) [39] submitted to the MIREX 2012 beat tracking
task using CSD, HF, EF, BEF and MAF. This configuration
is the released version of the Multi-feature beat tracker due to
the disproportionately high computational cost of including the
PSF ODF.
While the mean performance of all beat tracking systems is

moderately low when using CMLc or CMLt (i.e., when the
beats must be tapped at the annotated metrical level), perfor-
mance naturally improves when we incorporate the additional,
allowed metrical levels using AMLc and AMLt.
When comparing the proposed beat tracking algorithm with

the reference systems, as shown in Table III, we see that the pro-
posed method outperforms the reference methods in the mean
value for all of the evaluation criteria. However, not all of the
differences are statistically significant ( ).We find no sig-
nificant differences between the proposed algorithm and the fol-
lowing reference methods with the DAV, DEG and KLA sys-
tems underCMLc, and then with the KLA system underCMLt.
When we compare MultiFt InfG and MultiFt Reg, which use

a subset of six ODFs, with MultiFt Essentia which uses a subset
of five ODFs, we do not find statistically significant differences.
Furthermore we do not find any statistical difference compared

to the committee system with five separate beat tracking al-
gorithms (Beatroot, Degara, Ellis, Klapuri, IBT) as proposed
in [14], which supports our hypothesis of diversity in input fea-
tures being more important than using diverse beat tracking
models.

C. Computation Time

Given the equivalent performance of our multi-feature ap-
proach with the 5 BT committee, we now address the differ-
ences in computational cost. To this end, we record the com-
putation time for processing all the excerpts in Dataset1360 (a
total of 14 h 20 m 57 s). Simulations were conducted on a recent
iMac (2.7 GHz Intel Core i5 with 8 GBRAM runningMATLAB
R2011b). For the 5 BT committee we found a total processing
time of 1 h 56 m 06 s with the following breakdown per beat
tracking component (DEG: 13 m 57 s, KLA: 45 m 42 s, ELL:
10 m 17 s, DIX: 28 m 43 s, IBT: 16 m 44 s and the MMA cal-
culation took: 0 m 43 s). In comparison, the publicly available
MultiFt Essentia implementation took just 19 m 17 s. To extract
the beats in one minute of 44 kHz audio, the 5 BT committee
takes approximately 8.1 s, where as Essentia algorithms takes
only 1.3 s. In this sense, the use of a fast tracking algorithm (e.g.
DEG as opposed to KLA) and an efficient C++ implementation
can dramatically increase the speed with which the beats can be
estimated.

D. Automatic Selection Results

To verify that using either Information Gain or Regularity as a
selection mechanism provides a real improvement, we can com-
pare the performance in Table III for our system with what hap-
pens if we make a random selection of the “best” beat tracking
output per song. Running 100,000 trials we obtained mean per-
formance of [40.6%, 45.3%, 64.6%, 73.3%]with variance [0.49,
0.50, 0.37, 0.32] for CMLc, CMLt, AMLc, AMLt respec-
tively. The increase in performance we achieve using a struc-
tured, rather than random selection process is highly significant
( ). However, the beat tracking accuracy from using
either Information Gain or Regularity as a selection method falls
well below the theoretical optimum of the Oracle system which
can choose the best beat sequence per song, suggesting that au-
tomatic selection methods remains a profitable avenue for future
work.

E. Mean Mutual Agreement and Confidence Threshold

To further explore the properties of the multi-feature beat
tracker, we undertake an analysis of the MMA values. First,
we seek to recreate the primary result from [14] which showed
a high correlation between the MMA of the beat tracking
committee and the mean performance of the committee against
ground truth, the MGP. As shown in Fig. 4(a) we can see that
the MMA (using Information Gain) is strongly correlated with
the MGP of the committee using the set of ODFs. Thus we
can confirm that disagreement between the beats of the com-
mittee is indicative of overall poor beat tracking accuracy and
vice-versa. While we could not find a statistically significant
difference in performance between the six member and nine
member committees, we would like to explore the extent to
which the mutual agreement changes based on the number of
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Fig. 4. (a) ODF mean mutual agreement (MMA) vs ODF Mean ground truth
performance (MGP). (b) Error-bar of MMA calculated with 6 and more com-
mittee members vs songs, sorted by MMA(9 committee members).

committee members. To this end we show the range of observed
MMA values obtained with committees of six, seven, eight and
then nine members, in Fig. 4(b). As expected, we find very
low variance in the MMA values obtained with committees of
different sizes both when the mutual agreement is very low and
likewise when it is very high. In this sense the variation in the
size of the committee becomes apparent in the middle MMA
range ( bits).
To complete our analysis of Dataset1360, we investigate

whether we can use the MMA vs MGP correlation to automat-
ically assign either high or low confidence to the estimated
beats. Following [21], where a threshold of bits
was found to be indicative of acceptable beat tracking via
a subjective listening test, we re-examine the beat tracking
performance on songs with MMA above and below 1.5 bits. As
shown in Table IV, we see that performance is far higher for
excerpts where the MMA is above the threshold compared to
below it. Of the 1360 excerpts in the dataset, we found 1126
(82.9%) were above it, for which the AMLt value for
all configurations of the multi-feature beat tracker. While the
beat tracking performance is lower for bits this
does not mean the multi-feature beat estimations cannot be ac-
curate, merely that we do not have high confidence in the result.
Likewise there will be cases with MMA above the threshold
which are not accurate. These can arise when the beats are
tapped at a meaningful metrical level, but one not included with
in the set of allowed levels specified for AMLt [33].

F. MIREX Results

Thus far, all of our analysis has been Dataset1360, and while
there is a wide diversity of musical genres and a large number of
annotated files, we should acknowledge that the performancewe
observe might be slightly optimistic given access to the test data
when choosing the committee members. Therefore, in addition
to our own evaluation on theDataset1360, we also report results

TABLE IV
MEAN SCORES (%) OF ORACLE, COMMITTEE OF 5 BEAT TRACKERS (5BT),
MULTI-FEATURE BEAT TRACKER (MULTIFT) AND BEST MEAN PERFORMANCE

BEAT TRACKER (BESTBT) FOR THE TWO SUBSETS OF DATASET1360
DIVIDED BY AN MMA THRESHOLD OF 1.5 BITS

TABLE V
MIREX 2012 MEAN PERFORMANCE (%) AND THE BEST AMLT PERFORMANCE

IN 2011,2010 AND 2009 IN MCK DATASET

http://nema.lis.illinois.edu/nema out/mirex2012/results/abt/mck/
http://nema.lis.illinois.edu/nema out/mirex2011/results/abt/mck/
http://nema.lis.illinois.edu/nema out/mirex2010/results/abt/mck/
http:/music-ir.org/mirex/wiki/2009:Audio Beat Tracking Results

from the 2012MIREXAudio Beat Tracking task, where we sub-
mitted two versions of our multi-feature beat tracker: ZDG1 and
ZDG2 [39] which used BEF, CSD, EF, HF and MAF as com-
mittee members, and used the information gain and regularity
selection methods respectively. The MIREX dataset is private
and therefore can be considered as appropriate validation for our
method.
In the Table V we show the 2012 MIREX results (sorted by

AMLt) for the beat tracking task are presented, and also the
best AMLt performers in 2011, 2010 and 2009 in the MCK
dataset. The MCK dataset contains 160 30-sec. excerpts (WAV
format) and has been used since the beginning of the MIREX



824 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 22, NO. 4, APRIL 2014

beat tracking evaluation in 2006. The excerpts in the MCK
dataset each have an approximately stable tempo covering a
wide distribution of tempi across all files, and a large variety
of instrumentation and musical styles. About 20% of the files
contain non-binary meters with a small number of examples
contain changing meters.
As can be seen from the table, our multi-feature systems

ZDG1 and ZDG2 perform competitively with the submitted
algorithms for 2012 and those which have performed well in
previous years. While the differences in performances are small
between the most accurate systems we believe that the state of
the art accuracy provided by our method shows that we have
not over-fitted to Dataset1360 to a degree which has adversely
affected performance on the closed MIREX dataset.

V. CONCLUSIONS AND FUTURE WORK

In this paper we presented a multi-feature beat tracking
system. The main contribution of this research has been to
demonstrate that the concept mutual agreement between beat
tracking systems, presented in [14], can be extended to a
committee of input features passed to a single beat tracking
model, i.e. that there is sufficient diversity in input features to
permit the use of a mutual agreement based selection method.
In addition we make our beat tracking system freely available
for re-use as part of the Essentia framework.
In a comprehensive comparison of the current state in beat

tracking, we demonstrated that our system can outperform the
current state of the art in beat tracking, and we have shown
this both on the largest compiled beat tracking dataset, and in
a closed MIREX evaluation. Beyond providing an accurate es-
timate of beat locations across a wide variety of musical styles,
our system can also exploit the property that mutual agreement
can indicate the level of confidence in the resulting beat loca-
tions. To this end, we showed that beat tracking performance
is much more accurate when the mutual agreement between
the committee members is high, compared to when the beat
outputs lack consensus. In the wider context of re-use of our
beat tracker, in particular for MIR applications which rely on
beat-synchronous processing and assume the beats to be accu-
rate, we can provide a guide over whether the beat locations
ought to be trusted or not using MMA. Furthermore, the MMA
can automatically indicate songs which are challenging for beat
tracking, and therefore worthwhile for manual annotation as
ground truth [32].
In terms of future work, we plan to investigate other input

features which we could use as input to our multi-feature beat
tracker, in particular those which can cater for more challenging
beat tracking cases, e.g. for songs which lack clear percussive
content. In addition we will also explore other techniques for au-
tomatically selecting between the committee of beat sequences
(e.g. ROVER [51]), with the aim of closing the gap towards
what is theoretically possible with an Oracle system and what
can currently be achieved.
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