Clustering con Scikit Learn

Por Jose R. Zapata

Invítame a un Café

Importar librerias

import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
from sklearn import metrics
from sklearn.cluster import KMeans

información de los datos

iris_df = pd.read_csv('datasets/iris.csv',
                      skiprows=1,
                      names = ['sepal-length',
                               'sepal-width',
                               'petal-length',
                               'petal-width',
                               'class'])

iris_df.head()

sepal-lengthsepal-widthpetal-lengthpetal-widthclass
05.13.51.40.2Iris-setosa
14.93.01.40.2Iris-setosa
24.73.21.30.2Iris-setosa
34.63.11.50.2Iris-setosa
45.03.61.40.2Iris-setosa

Mezclar la base de datos

iris_df = iris_df.sample(frac=1).reset_index(drop=True)

iris_df.head()

sepal-lengthsepal-widthpetal-lengthpetal-widthclass
06.32.34.41.3Iris-versicolor
16.53.05.51.8Iris-virginica
25.03.51.60.6Iris-setosa
35.62.84.92.0Iris-virginica
46.22.94.31.3Iris-versicolor
iris_df.shape
(150, 5)
iris_df[iris_df.isnull().any(axis=1)]

sepal-lengthsepal-widthpetal-lengthpetal-widthclass
iris_df.describe()

sepal-lengthsepal-widthpetal-lengthpetal-width
count150.000000150.000000150.000000150.000000
mean5.8433333.0540003.7586671.198667
std0.8280660.4335941.7644200.763161
min4.3000002.0000001.0000000.100000
25%5.1000002.8000001.6000000.300000
50%5.8000003.0000004.3500001.300000
75%6.4000003.3000005.1000001.800000
max7.9000004.4000006.9000002.500000
iris_df['class'].unique()
array(['Iris-versicolor', 'Iris-virginica', 'Iris-setosa'], dtype=object)

Preprocesamiento de datos

from sklearn import preprocessing

label_encoding = preprocessing.LabelEncoder()

iris_df['class'] = label_encoding.fit_transform(iris_df['class'].astype(str))

iris_df.head()

sepal-lengthsepal-widthpetal-lengthpetal-widthclass
06.32.34.41.31
16.53.05.51.82
25.03.51.60.60
35.62.84.92.02
46.22.94.31.31
iris_df.describe()

sepal-lengthsepal-widthpetal-lengthpetal-widthclass
count150.000000150.000000150.000000150.000000150.000000
mean5.8433333.0540003.7586671.1986671.000000
std0.8280660.4335941.7644200.7631610.819232
min4.3000002.0000001.0000000.1000000.000000
25%5.1000002.8000001.6000000.3000000.000000
50%5.8000003.0000004.3500001.3000001.000000
75%6.4000003.3000005.1000001.8000002.000000
max7.9000004.4000006.9000002.5000002.000000

análisis Univariable

Se debe hacer un análisis de cada una de las variables y describir sus caracteristicas

análisis Bivariable

Scatter plot

fig, ax = plt.subplots(figsize=(12, 8))

plt.scatter(iris_df['sepal-length'], iris_df['sepal-width'], s=250)

plt.xlabel('sepal-length')
plt.ylabel('sepal-width')

plt.show()

png

fig, ax = plt.subplots(figsize=(12, 8))

plt.scatter(iris_df['petal-width'], iris_df['petal-length'], s=250)

plt.xlabel('petal-width')
plt.ylabel('petal-length')

plt.show()

png

fig, ax = plt.subplots(figsize=(12, 8))

plt.scatter(iris_df['sepal-length'], iris_df['petal-length'], s=250)

plt.xlabel('sepal-length')
plt.ylabel('petal-length')

plt.show()

png

KMeans SIMPLE

iris_2D = iris_df[['sepal-length', 'petal-length']]

iris_2D.sample(5)

sepal-lengthpetal-length
155.41.3
235.03.5
446.45.3
1255.95.1
1385.01.2
iris_2D.shape
(150, 2)
iris_2D = np.array(iris_2D)
kmeans_model_2D = KMeans(n_clusters=3, max_iter=1000).fit(iris_2D)
kmeans_model_2D.labels_
array([1, 2, 0, 1, 1, 1, 0, 2, 0, 0, 2, 1, 1, 2, 2, 0, 1, 2, 0, 0, 2, 1,
       2, 1, 2, 0, 0, 2, 1, 2, 1, 1, 1, 2, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1,
       2, 0, 2, 1, 1, 0, 0, 2, 2, 0, 0, 1, 1, 1, 0, 2, 1, 0, 1, 0, 1, 2,
       1, 1, 2, 1, 1, 1, 2, 1, 0, 1, 1, 2, 1, 0, 2, 0, 0, 1, 2, 0, 1, 0,
       0, 2, 2, 2, 1, 1, 2, 1, 1, 2, 0, 0, 0, 0, 1, 2, 1, 1, 1, 1, 0, 2,
       0, 0, 0, 1, 2, 0, 1, 2, 0, 0, 1, 1, 2, 2, 2, 1, 0, 2, 0, 1, 0, 0,
       1, 0, 2, 0, 1, 0, 0, 1, 0, 0, 2, 2, 1, 2, 2, 1, 1, 0], dtype=int32)
centroids_2D = kmeans_model_2D.cluster_centers_

centroids_2D
array([[5.00784314, 1.49411765],
       [5.87413793, 4.39310345],
       [6.83902439, 5.67804878]])
fig, ax = plt.subplots(figsize=(12, 8))

plt.scatter(centroids_2D[:,0], centroids_2D[:,1], c='r', s=250, marker='s')

for i in range(len(centroids_2D)):
    plt.annotate(i, (centroids_2D[i][0], centroids_2D[i][1]), fontsize=30)

png

iris_labels = iris_df['class']
print("Homogeneity_score: ", metrics.homogeneity_score(iris_labels, kmeans_model_2D.labels_))

print("Completeness_score: ", metrics.completeness_score(iris_labels, kmeans_model_2D.labels_))

print("v_measure_score: ", metrics.v_measure_score(iris_labels, kmeans_model_2D.labels_))

print("Adjusted_rand_score: ", metrics.adjusted_rand_score(iris_labels, kmeans_model_2D.labels_))

print("Adjusted_mutual_info_score: ", metrics.adjusted_mutual_info_score(iris_labels,  kmeans_model_2D.labels_))

print("Silhouette_score: ", metrics.silhouette_score(iris_2D, kmeans_model_2D.labels_))
Homogeneity_score:  0.7033177646052958
Completeness_score:  0.7096993707802843
v_measure_score:  0.706494157075837
Adjusted_rand_score:  0.6988627672348092
Adjusted_mutual_info_score:  0.7028024531409135
Silhouette_score:  0.5890612473759282
colors = ['yellow','blue','green']

plt.figure(figsize=(12, 8))

plt.scatter(iris_df['sepal-length'], iris_df['petal-length'], c=iris_df['class'], s=200,
            cmap=matplotlib.colors.ListedColormap(colors), alpha=0.5)

plt.scatter(centroids_2D[:,0], centroids_2D[:,1], c='r', s=250, marker='s')

for i in range(len(centroids_2D)):
    plt.annotate( i, (centroids_2D[i][0], centroids_2D[i][1]), fontsize=30)

png

iris_features = iris_df.drop('class', axis=1)

iris_features.head()

sepal-lengthsepal-widthpetal-lengthpetal-width
06.32.34.41.3
16.53.05.51.8
25.03.51.60.6
35.62.84.92.0
46.22.94.31.3
iris_labels = iris_df['class']

iris_labels.sample(5)
51     2
55     1
119    0
86     1
13     1
Name: class, dtype: int64
kmeans_model = KMeans(n_clusters=3).fit(iris_features)
kmeans_model.labels_
array([1, 2, 0, 1, 1, 1, 0, 2, 0, 0, 2, 1, 1, 2, 2, 0, 1, 2, 0, 0, 2, 1,
       2, 1, 2, 0, 1, 1, 1, 2, 1, 1, 1, 2, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1,
       2, 0, 2, 1, 1, 0, 0, 2, 2, 0, 0, 1, 1, 1, 0, 2, 1, 0, 1, 0, 1, 2,
       1, 1, 2, 1, 1, 1, 2, 1, 0, 1, 1, 2, 1, 0, 2, 0, 0, 1, 2, 0, 1, 0,
       0, 2, 2, 1, 1, 1, 2, 1, 1, 2, 0, 0, 0, 0, 1, 2, 1, 1, 1, 1, 0, 1,
       0, 0, 0, 1, 2, 0, 1, 2, 0, 0, 1, 1, 2, 2, 2, 1, 0, 2, 0, 1, 0, 0,
       1, 0, 2, 0, 1, 0, 0, 1, 0, 0, 2, 2, 1, 2, 2, 1, 1, 0], dtype=int32)
kmeans_model.cluster_centers_
array([[5.006     , 3.418     , 1.464     , 0.244     ],
       [5.9016129 , 2.7483871 , 4.39354839, 1.43387097],
       [6.85      , 3.07368421, 5.74210526, 2.07105263]])
print("Homogeneity_score: ", metrics.homogeneity_score(iris_labels, kmeans_model.labels_))
print("Completeness_score: ", metrics.completeness_score(iris_labels, kmeans_model.labels_))
print("v_measure_score: ", metrics.v_measure_score(iris_labels, kmeans_model.labels_))
print("Adjusted_rand_score: ", metrics.adjusted_rand_score(iris_labels, kmeans_model.labels_))
print("Adjusted_mutual_info_score: ", metrics.adjusted_mutual_info_score(iris_labels,  kmeans_model.labels_))
print("Silhouette_score: ", metrics.silhouette_score(iris_features, kmeans_model.labels_))
Homogeneity_score:  0.7514854021988338
Completeness_score:  0.7649861514489815
v_measure_score:  0.7581756800057784
Adjusted_rand_score:  0.7302382722834697
Adjusted_mutual_info_score:  0.7551191675800485
Silhouette_score:  0.5525919445499757

Clustering con varios modelos

from sklearn import metrics

from sklearn.cluster import KMeans
from sklearn.cluster import AgglomerativeClustering
from sklearn.cluster import DBSCAN
from sklearn.cluster import MeanShift
from sklearn.cluster import Birch
from sklearn.cluster import AffinityPropagation
from sklearn.cluster import MiniBatchKMeans

import warnings
warnings.filterwarnings("ignore")
def build_model(clustering_model, data, labels):

    model = clustering_model(data)

    print('homo\tcompl\tv-meas\tARI\tAMI\tsilhouette')
    print(50 * '-')

    print('%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f'
          %(metrics.homogeneity_score(labels, model.labels_),
            metrics.completeness_score(labels, model.labels_),
            metrics.v_measure_score(labels, model.labels_),
            metrics.adjusted_rand_score(labels, model.labels_),
            metrics.adjusted_mutual_info_score(labels,  model.labels_),
            metrics.silhouette_score(data, model.labels_)))

Kmeans

def k_means(data, n_clusters=3, max_iter=1000):
    model = KMeans(n_clusters=n_clusters, max_iter=max_iter).fit(data)

    return model
build_model(k_means, iris_features, iris_labels)
homo compl v-meas ARI AMI silhouette
--------------------------------------------------
0.751 0.765 0.758 0.730 0.755 0.553

Agglomerative

def agglomerative_fn(data, n_clusters=3):
    model = AgglomerativeClustering(n_clusters = n_clusters).fit(data)

    return model
build_model(agglomerative_fn, iris_features, iris_labels)
homo compl v-meas ARI AMI silhouette
--------------------------------------------------
0.761 0.780 0.770 0.731 0.767 0.554

Dbscan

def dbscan_fn(data, eps=0.45, min_samples=4):
    model = DBSCAN(eps=eps, min_samples=min_samples).fit(data)
    return model
build_model(dbscan_fn, iris_features, iris_labels)
homo compl v-meas ARI AMI silhouette
--------------------------------------------------
0.577 0.609 0.593 0.508 0.584 0.372

Mean Shift

def mean_shift_fn(data, bandwidth=0.85):
    model = MeanShift(bandwidth=bandwidth).fit(data)
    return model
build_model(mean_shift_fn, iris_features, iris_labels)
homo compl v-meas ARI AMI silhouette
--------------------------------------------------
0.760 0.772 0.766 0.744 0.763 0.551

Birch

def birch_fn(data, n_clusters=3):
    model = Birch(n_clusters=n_clusters).fit(data)
    return model
build_model(birch_fn, iris_features, iris_labels)
homo compl v-meas ARI AMI silhouette
--------------------------------------------------
0.778 0.804 0.791 0.732 0.788 0.554

Affinity Propagation

def affinity_propagation_fn(data, damping=0.6, max_iter=1000):
    model = AffinityPropagation(damping=damping, max_iter=max_iter).fit(data)
    return model
build_model(affinity_propagation_fn, iris_features, iris_labels)
homo compl v-meas ARI AMI silhouette
--------------------------------------------------
0.851 0.492 0.623 0.437 0.612 0.349

Mini Batch Kmeans

def mini_batch_kmeans_fn(data, n_clusters=3, max_iter=1000):
    model = MiniBatchKMeans(n_clusters=n_clusters, max_iter=max_iter, batch_size=20).fit(data)
    return model
build_model(mini_batch_kmeans_fn, iris_features, iris_labels)
homo compl v-meas ARI AMI silhouette
--------------------------------------------------
0.787 0.809 0.798 0.746 0.795 0.555

Hyperparameter Tuning (optimizacion de Hiperparametros)

El ejemplo se desarrollara con un dataset diferente con menos variables

from sklearn import metrics
from sklearn.metrics import silhouette_score

from sklearn.model_selection import ParameterGrid

from sklearn.cluster import KMeans
from sklearn.cluster import DBSCAN
from sklearn.cluster import MeanShift
drivers_df = pd.read_csv('datasets/driver_details.csv')

drivers_df.head()

Driver_IDDistance_FeatureSpeeding_Feature
0342331193571.2428
1342331321252.5325
2342331372464.5427
3342331137355.6922
4342331099954.5825
drivers_df.shape
(4000, 3)
drivers_df[drivers_df.isnull().any(axis=1)]

Driver_IDDistance_FeatureSpeeding_Feature
drivers_df.describe()

Driver_IDDistance_FeatureSpeeding_Feature
count4.000000e+034000.0000004000.000000
mean3.423312e+0976.04152310.721000
std1.154845e+0353.46956313.708543
min3.423310e+0915.5200000.000000
25%3.423311e+0945.2475004.000000
50%3.423312e+0953.3300006.000000
75%3.423313e+0965.6325009.000000
max3.423314e+09244.790000100.000000
drivers_features = drivers_df.drop('Driver_ID', axis=1)

KMeans clustering

parameters = {'n_clusters': [2, 3, 4, 5, 10, 20, 30]}

parameter_grid = ParameterGrid(parameters)
list(parameter_grid)
[{'n_clusters': 2},
 {'n_clusters': 3},
 {'n_clusters': 4},
 {'n_clusters': 5},
 {'n_clusters': 10},
 {'n_clusters': 20},
 {'n_clusters': 30}]
best_score = -1
model = KMeans()
for g in parameter_grid:
    model.set_params(**g)
    model.fit(drivers_features)

    ss = metrics.silhouette_score(drivers_features, model.labels_)
    print('Parametro: ', g, 'Score: ', ss)
    if ss > best_score:
        best_score = ss
        best_grid = g
Parametro:  {'n_clusters': 2} Score:  0.8490223286225532
Parametro:  {'n_clusters': 3} Score:  0.8231396834167266
Parametro:  {'n_clusters': 4} Score:  0.5911323766293183
Parametro:  {'n_clusters': 5} Score:  0.5127476940598861
Parametro:  {'n_clusters': 10} Score:  0.4386111161388452
Parametro:  {'n_clusters': 20} Score:  0.36694291591807765
Parametro:  {'n_clusters': 30} Score:  0.3372412347052073
best_grid
{'n_clusters': 2}
fig, ax = plt.subplots(figsize=(12, 8))

plt.scatter(drivers_features['Distance_Feature'],
            drivers_features['Speeding_Feature'], s=250)

plt.xlabel('Distance_Feature')
plt.ylabel('Speeding_Feature')

plt.show()

png

DBSCAN clustering

parameters = {'eps': [0.9, 1.0, 5.0, 10.0, 12.0, 14.0, 20.0],
              'min_samples': [5, 7, 10, 12]}

parameter_grid = ParameterGrid(parameters)

list(parameter_grid)
[{'eps': 0.9, 'min_samples': 5},
 {'eps': 0.9, 'min_samples': 7},
 {'eps': 0.9, 'min_samples': 10},
 {'eps': 0.9, 'min_samples': 12},
 {'eps': 1.0, 'min_samples': 5},
 {'eps': 1.0, 'min_samples': 7},
 {'eps': 1.0, 'min_samples': 10},
 {'eps': 1.0, 'min_samples': 12},
 {'eps': 5.0, 'min_samples': 5},
 {'eps': 5.0, 'min_samples': 7},
 {'eps': 5.0, 'min_samples': 10},
 {'eps': 5.0, 'min_samples': 12},
 {'eps': 10.0, 'min_samples': 5},
 {'eps': 10.0, 'min_samples': 7},
 {'eps': 10.0, 'min_samples': 10},
 {'eps': 10.0, 'min_samples': 12},
 {'eps': 12.0, 'min_samples': 5},
 {'eps': 12.0, 'min_samples': 7},
 {'eps': 12.0, 'min_samples': 10},
 {'eps': 12.0, 'min_samples': 12},
 {'eps': 14.0, 'min_samples': 5},
 {'eps': 14.0, 'min_samples': 7},
 {'eps': 14.0, 'min_samples': 10},
 {'eps': 14.0, 'min_samples': 12},
 {'eps': 20.0, 'min_samples': 5},
 {'eps': 20.0, 'min_samples': 7},
 {'eps': 20.0, 'min_samples': 10},
 {'eps': 20.0, 'min_samples': 12}]
model = DBSCAN()
best_score = -1
for g in parameter_grid:
    model.set_params(**g)
    model.fit(drivers_features)

    ss = metrics.silhouette_score(drivers_features, model.labels_)
    print('Parametro: ', g, 'Score: ', ss)
    if ss > best_score:
        best_score = ss
        best_grid = g
Parametro:  {'eps': 0.9, 'min_samples': 5} Score:  -0.6057173612292268
Parametro:  {'eps': 0.9, 'min_samples': 7} Score:  -0.4265046999507063
Parametro:  {'eps': 0.9, 'min_samples': 10} Score:  -0.39254168253371013
Parametro:  {'eps': 0.9, 'min_samples': 12} Score:  -0.4286838741223884
Parametro:  {'eps': 1.0, 'min_samples': 5} Score:  -0.6155746493060738
Parametro:  {'eps': 1.0, 'min_samples': 7} Score:  -0.41637001640330673
Parametro:  {'eps': 1.0, 'min_samples': 10} Score:  -0.3837814631696031
Parametro:  {'eps': 1.0, 'min_samples': 12} Score:  -0.38648235283744914
Parametro:  {'eps': 5.0, 'min_samples': 5} Score:  0.31011275260225
Parametro:  {'eps': 5.0, 'min_samples': 7} Score:  0.7820011223700856
Parametro:  {'eps': 5.0, 'min_samples': 10} Score:  0.7974222681120255
Parametro:  {'eps': 5.0, 'min_samples': 12} Score:  0.7914367881923341
Parametro:  {'eps': 10.0, 'min_samples': 5} Score:  0.7598056658175874
Parametro:  {'eps': 10.0, 'min_samples': 7} Score:  0.8157570071704705
Parametro:  {'eps': 10.0, 'min_samples': 10} Score:  0.8107405850782263
Parametro:  {'eps': 10.0, 'min_samples': 12} Score:  0.7826641175724478
Parametro:  {'eps': 12.0, 'min_samples': 5} Score:  0.8082887021398691
Parametro:  {'eps': 12.0, 'min_samples': 7} Score:  0.8006933163754029
Parametro:  {'eps': 12.0, 'min_samples': 10} Score:  0.8177778536465214
Parametro:  {'eps': 12.0, 'min_samples': 12} Score:  0.8155661587264617
Parametro:  {'eps': 14.0, 'min_samples': 5} Score:  0.8111072866552332
Parametro:  {'eps': 14.0, 'min_samples': 7} Score:  0.8121719747215577
Parametro:  {'eps': 14.0, 'min_samples': 10} Score:  0.8029471072047811
Parametro:  {'eps': 14.0, 'min_samples': 12} Score:  0.8178938395610874
Parametro:  {'eps': 20.0, 'min_samples': 5} Score:  0.8490223286225532
Parametro:  {'eps': 20.0, 'min_samples': 7} Score:  0.8490223286225532
Parametro:  {'eps': 20.0, 'min_samples': 10} Score:  0.8192119040131286
Parametro:  {'eps': 20.0, 'min_samples': 12} Score:  0.8156567891999053
best_grid
{'eps': 20.0, 'min_samples': 5}
model.set_params(**best_grid)
model.fit(drivers_features)
DBSCAN(eps=20.0)
len(model.labels_)
4000
n_clusters = len(set(model.labels_)) - (1 if -1 in model.labels_ else 0)

n_clusters
2
n_noise = list(model.labels_).count(-1)

n_noise
0
another_grid = {'eps': 5.0, 'min_samples': 5}

model.set_params(**another_grid)
model.fit(drivers_features)

n_clusters = len(set(model.labels_)) - (1 if -1 in model.labels_ else 0)
print('Numero de clusters: ', n_clusters)

n_noise = list(model.labels_).count(-1)
print('Puntos ruido: ', n_noise)
Numero de clusters:  7
Puntos ruido:  117
another_grid = {'eps': 5.0, 'min_samples': 7}

model.set_params(**another_grid)
model.fit(drivers_features)

n_clusters = len(set(model.labels_)) - (1 if -1 in model.labels_ else 0)
print('Numero de Clusters: ', n_clusters)

n_noise = list(model.labels_).count(-1)
print('Puntos Ruido: ', n_noise)
Numero de Clusters:  3
Puntos Ruido:  157

MeanShift clustering

https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/cluster/_mean_shift.py#L4

https://stats.stackexchange.com/questions/86324/name-of-algorithm-or-paper-that-scikit-learn-cluster-estimate-bandwidth-func

from sklearn.cluster import estimate_bandwidth
estimate_bandwidth(drivers_features)
33.960524729584314
model = MeanShift(bandwidth=estimate_bandwidth(drivers_features)).fit(drivers_features)

metrics.silhouette_score(drivers_features, model.labels_)
0.8231396834167266

Referencias

Cheatsheet scikit-learn https://images.datacamp.com/image/upload/v1676302389/Marketing/Blog/Scikit-Learn_Cheat_Sheet.pdf

Phd. Jose R. Zapata